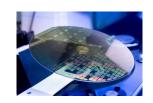


Bosch SiC Power MOSFETs Bosch products, history and production

Bosch SiC history & production

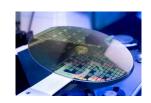
- Own SiC technology development, design, fab process and wafer test, together in one campus for optimized and direct feedback
- Dedicated SiC-line in automotive qualified 150mm fab at semiconductor HQ Reutlingen Germany.
 200mm readiness of production lines
- ► Automotive qualified products and supplier
- More than 10 years experience in SiC MOSFET development and more than 20 years in trench process ("Bosch process")

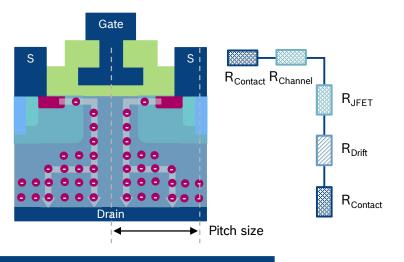
SiC products


- ► Bare die products with variable layout & discrete packaged products in two voltage classes
- **▶** Bare die products
 - 1200V: $10m\Omega$, $13m\Omega$, $23m\Omega$, $31m\Omega$ & $50m\Omega$
 - 750V: $7m\Omega$, $10m\Omega$, $16m\Omega$, $22m\Omega$ & $35m\Omega$
- ► SMD TO-263-7 and THT TO-247-3L/4L discrete packaged products for e.g. on-board chargers and dc-dc applications

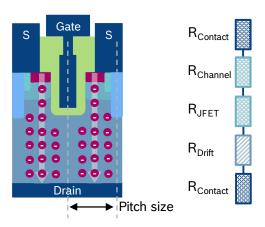
1200V: 23mΩ, 31mΩ, 50mΩ

750V: $16m\Omega$, $22m\Omega$, $36m\Omega$


Bosch SiC Power MOSFETs Main features and benefits of Bosch SiC

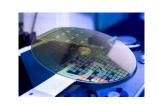


	Benchmark low on-resistance	High partial load efficiency (static losses) Typical T _j : 70° - 100°C and also at low temperature ➤ Low chip temperature → low R _{DS(on)} → high efficiency
Ø	Optimized switching behaviour	High partial load efficiency (dynamic losses) ➤ Fast switching slopes → low losses → high efficiency
	Flexible and simple to drive	Lowest internal gate resistance & flexible performance using gate voltage of 15V or 18V with minimal impact of R _{DS(on)} Switching speed adjustable by gate resistors
ß	High oxide reliability	Low failure rate for automotive grade reliability and low gate and drain leakage currents
TEST	Reliability & robustness	High short circuit robustness & avalanche robustness
	Highest temperature rating up to 200°C for bare dies	Improved thermal design Smaller components can be used for the same power rating → space saving → reduced module form factor

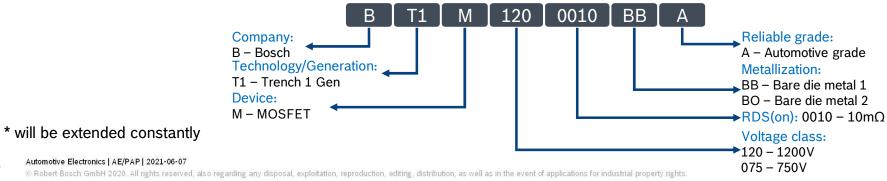

Bosch SiC Power MOSFETs Advantages of Bosch dual channel trench technology

Planar gate technology

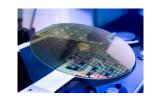
- Used in first and current generations of SiC-MOSFETs
- Larger pitch size \rightarrow higher $R_{DS(on)}$ x A compared to trench technology



Dual channel trench gate technology

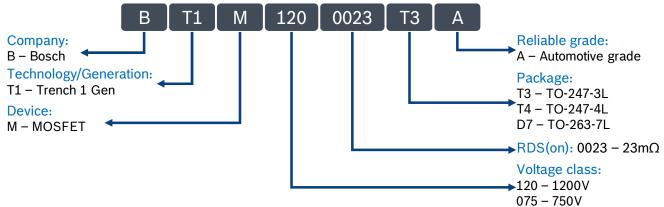

- Bosch own SiC process in-house development
- Very small pitch size, potential to future further scaling
- Lower R_{DS(on)} x A compared to planar SiC MOSFET
- Bosch device concept optimized for reliability
- High short circuit robustness
- 25 years BOSCH experience in trench technology

Bosch SiC Power MOSFETs Portfolio bare die*



Туре	V _{DSS} Voltage [V]	I _D Current [A]	R _{DS(on)} [mΩ]	Qualification	Metallization
BT1M1200010*A	1200	175	10	AEC-Q101	* = BB: AlCu or * = BO: metallization for sintering/soldering
BT1M1200013*A		130	13		
BT1M1200023*A		75	23		
BT1M1200031*A		55	31		
BT1M1200050*A		35	50		
BT1M0750007*A		225	7	AEC-Q101	* = BB: AlCu or * = BO: metallization for sintering/soldering
BT1M0750010*A	750	165	10		
BT1M0750016*A		100	16		
BT1M0750022*A		70	22		
BT1M0750035*A		45	35		

Bosch SiC Power MOSFETs Portfolio line discrete*



Туре	V _{DSS} Voltage [V]	I _D Current [A]	$R_{DS(on)}[m\Omega]$	Qualification	Package
BT1M1200023*A	1200	63	23	AEC-Q101	* = T3: TO-247-3L * = T4: TO-247-4L * = D7: TO-263-7L
BT1M1200031*A		44	31		
BT1M1200050*A		29	50		
BT1M0750016*A		82	16	AEC-Q101	* = T3: TO-247-3L * = T4: TO-247-4L * = D7: TO-263-7L
BT1M0750022*A	750	59	22		
BT1M0750035*A		39	36		

^{*} will be extended constantly

